skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lewis, Cale E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Energy-resolving photon-counting detectors (PCDs) separate photons from a polychromatic X-ray source into a number of separate energy bins. This spectral information from PCDs would allow advancements in X-ray imaging, such as improving image contrast, quantitative imaging, and material identification and characterization. However, aspects like detector spectral distortions and scattered photons from the object can impede these advantages if left unaccounted for. Scattered X-ray photons act as noise in an image and reduce image contrast, thereby significantly hindering PCD utility. In this paper, we explore and outline several important characteristics of spectral X-ray scatter with examples of soft-material imaging (such as cancer imaging in mammography or explosives detection in airport security). Our results showed critical spectral signatures of scattered photons that depend on a few adjustable experimental factors. Additionally, energy bins over a large portion of the spectrum exhibit lower scatter-to-primary ratio in comparison to what would be expected when using a conventional energy-integrating detector. These important findings allow flexible choice of scatter-correction methods and energy-bin utilization when using PCDs. Our findings also propel the development of efficient spectral X-ray scatter correction methods for a wide range of PCD-based applications. 
    more » « less